Modeling Pain score in clinical trials using a joint survival-longitudinal mixed model with a Beta distribution in presence of missing values not occurring at random.

Marion Bouillon-Pichault, Bruno Boulanger, Astrid Jullion, Bianca Teodorecu ARLENDA, Belgium

Introduction

Context

- Trial to assess the efficacy of a drug in patients suffering from pain
- Pain is measured by means of a score (Likert or VAS) bounded in [0,10].
- **Drop-outs** are frequent in pain trials and are related to the (lack of) efficacy of the drug (from 15% to 35% drop-out)

Objective

Propose a method that allows an unbiased estimation of the treatment effect by:

- Using a longitudinal mixed effect model with a **Beta** distribution (not a Normal or a multinomial one) to model pain score over the duration of the study.
- Modeling jointly the pain score and the time to drop-out, with the aim to understand the association between both processes*

*Reference: « Joint Modelling of longitudinal measurements and event time data », Henderson et al. Biostatistics (2000)

Simulations

Design : 4 doses (0, 0.75, 2, 4) ; 30 subjects per dose 5 time points: Day 1, 7, 14, 21, 28

Longitudinal class model for estimation (time is a class variable):

The Beta distribution for Pain score is used with the mean expressed as:

 $\mu = \text{int} + \text{base} * \beta_{\text{base}} + \text{dose}*\beta_{\text{dose}} + \beta_{t1}*(\text{time}=1) + \beta_{t2}*(\text{time}=2) + \beta_{t3}*(\text{time}=3) + \beta_{t4}*(\text{time}=4)$

Example of simulated data:

|--|

- Subject i, *i*=1,...,*M*, provides:
 - A set of the pain scores:
 - { Y_{ij} ; $j=1,...,n_i$ } at times { t_{ij} ; $j=1,...,n_i$ }
- Joint distribution of pain scores and event via a latent zero-mean bivariate Gaussian process, realized independenlty:

$$W_i = \{W_{1i}, W_{2i}\}$$

Longitudinal model:

$$Y_{ij} = \mu_i(t_{ij}) + W_{1i} + Z_{ij}$$

- $\mu_i(t_{ij})$ is the mean response
- $Z_{ij} \sim N(0,\sigma_z^2)$ is a sequence of i.i.d. errors

-
$$W_{1i} = U_{1i}$$
 with $U_{1i} \sim N(0, \sigma_U^2)$

Survival model:

$$S(t_{ij}) = \exp(-\alpha^* t_{ij})$$
 for exponential function

$$-\alpha = \exp(-(\beta_{s} * \text{dose}_{i} + \mathbf{W}_{2}))$$

- $W_2 = \gamma^* U_{1i}$ where γ measures the induced association

=> stochastic dependence

<u>Results</u>

Difference between dose and placebo at Day 28 (True value)			Joint model Mean (SE)	Longitudinal Model Mean (SE)
Dose	0.75	(-0.033)	-0.0325 (0.0047)	-0.0234 (0.0045)
Dose	2	(-0.12)	-0.0867 (0.01272)	-0.0624 (0.0120)
Dose	4	(-0.17)	-0.1734 (0.02544)	-0.1247 (0.0240)

Discussion

- Using the appropriate distribution (i.e. a **Beta** distribution for pain score) is recommended whenever possible to ensure **unbiased** estimates.
- If a **class model** is used to model the pain score, then, ignoring the dropout mechanism provides an underestimation of the treatment effect which can go up to 30% in some situations.
- If the **kinetic** of the pain scores decrease is modeled by, for instance an Emax model, then, ignoring the mechanism of drop-out is less an issue (results not presented).